
ER
D

C
TR

-1
3

-8

Center Directed Research Program

Development of Parallel GSSHA

E
n

gi
n

ee
r

R
es

ea
rc

h
 a

n
d

 D
ev

el
op

m
en

t
C

en
te

r

Paul R. Eller, Jing-Ru C. Cheng, Aaron R. Byrd,
Charles W. Downer, and Nawa Pradhan

September 2013

Approved for public release; distribution is unlimited.

The US Army Engineer Research and Development Center (ERDC) solves the
nation’s toughest engineering and environmental challenges. ERDC develops innovative
solutions in civil and military engineering, geospatial sciences, water resources, and
environmental sciences for the Army, the Department of Defense, civilian agencies, and
our nation’s public good. Find out more at www.erdc.usace.army.mil.

To search for other technical reports published by ERDC, visit the ERDC online library
at http://acwc.sdp.sirsi.net/client/default.

Center Directed Research Program ERDC TR-13-8
September 2013

Development of Parallel GSSHA

Paul R. Eller and Jing-Ru C. Cheng

Information Technology Laboratory
US Army Engineer Research and Development Center
3909 Halls Ferry Road
Vicksburg, MS 39180-6199

Aaron R. Byrd, Charles W. Downer, and Nawa Pradhan

Coastal and Hydraulics Laboratory
US Army Engineer Research and Development Center
3909 Halls Ferry Road
Vicksburg, MS 39180-6199

Final report

Approved for public release; distribution is unlimited.

Prepared for US Army Corps of Engineers
Washington, DC 20314-1000

Monitored by US Army Engineer Research and Development Center
3909 Halls Ferry Road, Vicksburg, MS 39180-6199

ERDC TR-13-8 ii

Abstract

GSSHA (Gridded Surface Subsurface Hydrologic Analysis) is a physics-
based, distributed, hydrologic, sediment, and constituent fate and
transport model. GSSHA can simulate 2D overland flow, 1D stream flow,
1D infiltration, 2D groundwater, and full coupling between groundwater,
shallow soils, streams, and overland flow. GSSHA simulations can be very
large and time consuming, simulating millions of grid cells over a period of
years. In order to run these simulations in a reasonable amount of time,
GSSHA must be parallelized to allow many processor systems to effectively
run a single GSSHA simulation. Parallelizing GSSHA will enable shorter
turnaround time, as well as the study of larger, more complex problems.

This work attempts to fully parallelize GSSHA using MPI, with the
ultimate goal of being able to efficiently run GSSHA on thousands of
processor cores. We hope to maintain the previous GSSHA functionality
by allowing users to run GSSHA without MPI and/or without PETSc. At
this point in time we have parallelized and tested the GSSHA code for the
overland routing, infiltration, groundwater, soil erosion, channel routing,
and lakes processes as well as many other routines needed to run these
simulations correctly. We have also parallelized the secant Levenberg-
Marquardt alternate run mode. For overland routing we have parallelized
the ADE, ADE-PC, and explicit methods. For infiltration we have
parallelized the Green and Ampt, Green and Ampt with Redistribution,
Multi-layer Green and Ampt, and Richards methods.

DISCLAIMER: The contents of this report are not to be used for advertising, publication, or promotional purposes.
Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.
All product names and trademarks cited are the property of their respective owners. The findings of this report are not to
be construed as an official Department of the Army position unless so designated by other authorized documents.

DESTROY THIS REPORT WHEN NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR.

ERDC TR-13-8 iii

Contents
Abstract ... ii

Figures and Tables ... iv

Preface ... v

1 Introduction ... 1

Background ... 2
MPI .. 2

DBuilder .. 2

PETSc .. 2
General Parallelization ... 3

2 2D Domain Decomposition .. 6

Basic Examples .. 7
Domain Coupling ... 8
MPI Macros .. 9
Updating ghost cells ... 9
Converting between local and global indices ... 9
Coupling 1D and 2D domains ... 9
MPI Allreduce across all processors.. 10
3D Arrays .. 10

3 GSSHA Routine Parallelization ... 11

Overland Flow Routing .. 11
Infiltration ... 12
Groundwater ... 12
PETSc Linear Solver ... 13
Soil Erosion .. 14
Channel Routing .. 15
Lakes .. 15
SLM Alternate Run Mode ... 16

4 Parallel I/O .. 17

Pre- and Post-processing .. 17
GSSHA MPI File Class ... 18

5 Run Procedure .. 20

6 Performance Results ... 21

7 Conclusion ... 23

References .. 25

Report Documentation Page

ERDC TR-13-8 iv

Figures and Tables

Figure

Figure 1. Exponential speedup plot for New Orleans and Fort Stewart Simulations. 23

Tables

Table 1. Run times for a 1 hour New Orleans simulation ... 21

Table 2. Run times for a 48 hour Fort Stewart simulation ... 21

ERDC TR-13-8 v

Preface

This study was conducted for the ERDC Center Directed Research program
under the project "Integrated Modeling and Risk Analysis for the Environ-
mental Consequences of Climate Change." The work was performed by the
Scientific Computing Research Center (CEERD-IH), US Army Engineer
Research and Development Center (ERDC), Information Technology
Laboratory (ITL), and the Flood and Storm Protection Division (CEERD-
HF), Coastal and Hydraulics Laboratory (CHL).

At the time of publication, Dr. Robert S. Maier was Chief, CEERD-IH; and
David R. Richards, was the Technical Director for ERDC-ITL. The Deputy
Director of ERDC-ITL was Patti S. Duett and the Director was Reed L.
Mosher. Dr. Aaron Byrd was Branch Chief, CEERD-HFH; and Dr. Ty V.
Wamsley was the Division Chief, CEERD-HF, William R. Curtis, CEERD-
HT, was the Technical Director for ERDC-CHL. The Acting Deputy
Director of ERDC-CHL was Richard Styles and the Acting Director was
Jose E. Sanchez.

COL Jeffrey R. Eckstein was the Commander of ERDC, and Dr. Jeffery P.
Holland was the Director.

ERDC TR-13-8 1

1 Introduction

GSSHA (Gridded Surface Subsurface Hydrologic Analysis) is a physics-
based, distributed, hydrologic, sediment, and constituent fate and transport
model. GSSHA can simulate 2D overland flow, 1D stream flow, 1D infiltra-
tion, 2D groundwater, and full coupling between groundwater, shallow
soils, streams, and overland flow. This can allow GSSHA to simulate a wide
variety of environments to analyze future conditions, management
scenarios, flood control, sediment transport, and pollutant transport as well
as many other types of problems.

GSSHA simulations can be very large and time consuming, simulating
millions of grid cells over a period of years. In order to run these simula-
tions in a reasonable amount of time, GSSHA must be parallelized to allow
many processor systems to effectively run a single GSSHA simulation.
Individual workstations often contain multi-core processors, while larger
clusters or supercomputers can provide users with access to hundreds of
thousands of processors. Parallelizing GSSHA will allow users to obtain
results in a shorter amount of time, as well as study larger, more complex
problems.

GSSHA has previously been given some parallel functionality through
parallelizing key components of the code using MPI or OpenMP. This work
attempts to fully parallelize GSSHA using MPI, with the ultimate goal of
being able to efficiently run GSSHA on thousands of processor cores. We
hope to maintain the previous GSSHA functionality by allowing users to run
GSSHA without MPI and/or without PETSc. At this point in time we have
parallelized and tested the GSSHA code for the overland routing, infiltra-
tion, groundwater, soil erosion, channel routing, and lakes processes as well
as many other routines needed to run these simulations correctly. We have
also parallelized the secant Levenberg-Marquardt alternate run mode. For
overland routing we have parallelized the ADE, ADE-PC, and explicit
methods. For infiltration we have parallelized the Green and Ampt, Green
and Ampt with Redistribution, Multi-layer Green and Ampt, and Richard’s
methods.

ERDC TR-13-8 2

Background

Multiple software packages are used to efficiently parallelize GSSHA. MPI,
DBuilder, and PETSc are used to develop the parallel version of GSSHA.

MPI

MPI (2012) (Message Passing Interface) is standardized and portable
message passing system for parallelizing code on a wide variety of systems,
in particular large distributed systems. MPI runs on supercomputers as
well as desktop computers, allowing all GSSHA users to take advantage of
the MPI parallelism provided they have MPI installed on their system.
GSSHA is primarily parallelized with MPI or other software packages that
use MPI.

DBuilder

The ERDC Information Technology Laboratory has developed a software
package called DBuilder (Hunter and Cheng 2005; Campbell et al. 2010),
which provides support for domain partitioning, parallel data management,
and coupling coordination. DBuilder provides users with a simplified
interface to MPI based parallelization routines. Taking advantage of
DBuilder allows us to simplify the parallelization process. The domain
partitioning code allows us to partition the 2D GSSHA domain, while the
coupler code allows us to pass data between the partitioned 2D domain and
the smaller 1D domain stored on each processor.

PETSc

The Portable, Extensible Toolkit for Scientific Computation (PETSc)
(Balay et al. 1997; Balay et al. 2008; Balay 2012) provides users with
access to a suite of data structures and routines for parallel scientific
applications. These routines include a wide variety of fast, scalable linear
solvers and preconditioners. The original GSSHA groundwater solver is a
line successive over-relaxation solver, which is hard to parallelize well. The
GSSHA groundwater routine is modified to use PETSc to solve the linear
systems. Interfacing GSSHA with PETSc gives users access to many
different state-of-the-art linear solvers and preconditioners that can be
used to more quickly and more accurately solve linear systems.

ERDC TR-13-8 3

General Parallelization

GSSHA simulates a wide variety of processes, including both 2D and 1D
domains. The 2D domains use a fixed grid where the grid cells can be
divided among the processors, allowing each processor to operate on a
subset of the overall 2D domain. The 1D domain is much smaller in
comparison and does not parallelize as well as the 2D domain. Therefore
the full 1D domain is simulated on each processor. A coupler is used to
transfer data between the 1D and 2D domains.

GSSHA uses 1-based indices, while DBuilder and most MPI routines use
0-based indices. The MPI GSSHA code is written in mpi *.cpp files.
Macros are written to properly pass the 1-based arrays to functions that
require 0-based arrays, as well as to simplify the GSSHA code. Some MPI
routines require careful changes to produce the correct results when using
both 1-based and 0-based arrays in the same routine.

Some GSSHA routines required significant changes to produce correct
results efficiently on multiple processors. Some routines would loop over
the 2D domain and modify neighboring grid cells instead of just modifying
the current grid cell. Since the neighboring grid cells are sometimes stored
on another processor, this required some routines to be rewritten to only
modify the current grid cell. Other routines were written in ways that limit
parallelism, such as using a LSOR (Line Successive Over Relaxation) linear
solver rou tine that operates on each row of the 2D grid one at a time.

These routines needed to be replaced, such as by replacing the LSOR
routine with the PETSc linear solver.

Most functions related to the MPI routines are called DBuild * or mpi *.
These routines have #ifdef preprocessor directives around them to allow the
code to be compiled with or without MPI. We use the GMPI flag for the MPI
sections of code. Other parts of GSSHA are rewritten to work correctly when
compiled serially or with MPI. While the parallelized GSSHA code is
primarily tested and run on linux systems, the code is also designed to work
correctly and tested on Windows systems.

A primary data structure is created and added to the GSSHA main var
struct containing all of the needed variables. This allows MPI DATA to be
passed to each function that is parallelized or that calls a parallelized
function. Define statements are used to create an empty MPI DATA

ERDC TR-13-8 4

structure for non-MPI simulations. This data structure is primarily used in
the MPI routines. Macros are developed to simplify GSSHA’s interaction
with the MPI code. In most cases, the MPI DATA struct will be passed into
many GSSHA routines and then the MPI routines will modify the variables
inside this struct.

1 typedef struct MPI_DATA {
2

3 // 2d domain struct
4 DB_Subdomain vtxDomain2d; // 2-D data structure
5

6 // DBuilder types
7 DB_Type intType; // Integer data type
8 DB_Type doubleType; // Double data type
9 DB_Type sedType3d; // 3d sediment type
10

11 // MPI types
12 MPI_Datatype sedMpiType3d; // 3d sediment MPI type
13

14 // Mesh information
15 int ownedElements; // Number of owned elements
16 int ghostElements; // Number of ghost elements
17 int localElements; // Total number of local
18 // elements (owned + ghost)
19 int globalElements; // Number of global elements
20

21 // 1d domain struct
22 DB_Subdomain vtxDomain1d; // 1-D data structure
23

24 // 1-D and 2-D Coupler
25 DB_Coupler vtxCoupler; // DBuilder coupler between
26 // 1-D and 2-D domains
27 // Alt Run Modes
28 MPI_Comm GSSHA_COMM; // MPI Communicator
29 int mpi_group; // MPI group number
30

31 // MPI I/O
32 int mpi_binary_io; // binary I/O flag
33 MPI_Datatype mpi_file_double; // MPI double file
34 MPI_Datatype mpi_file_int; // MPI int file
35

36 // PETSc structs
37 PETSC_DATA *petsc_data; // PETSc solver struct
38

39 } MPI DATA;

The primary MPI data structure also contains a PETSC DATA data
structure for the petsc solver. This stores information related to the linear
systems that must be solved. Since the structure of the mesh is constant
throughout the simulation, we can create a PETSc matrix, vectors, and
KSP solver at the beginning of the simulation, and then set double values
of the matrix and vectors in the PETSc solver code.

ERDC TR-13-8 5

1 typedef struct PETSC_DATA {
2

3 int prev_global_rows; // Number of rows of data for
4 // prior processors
5 int *petsc_map; // Mapping from global number
6 // to local number
7 int *dia, *oia, *dja, *oja; // Matrix structure arrays
8 // for split matrix
9 double *dval, *oval; // Matrix value arrays for
10 // split matrix
11 Mat A; // Matrix for linear solver
12 KSP ksp; // Linear solver data structure
13 Vec x, b; // Solution and rhs vectors for
14 // linear solver
15 int maxdj, maxoj; // Max number of elements in a
16 // diagonal and off-diagonal
17 } PETSC_DATA;

ERDC TR-13-8 6

2 2D Domain Decomposition

The 2D domain is partitioned using DBuilder, which calls ParMETIS
(Karypis 2012; Karypis and Schloegel 2011) to partition the 2D domain. An
equal portion of the 2D mask containing the 2D map of which grid cells
are being used during the simulation is read on each processor. By reading
an equal number of rows on each processor instead of the entire mask, we
reduce the memory requirements and reduce the amount of time spent in
I/O. This mask is used to create a list of neighbors for each grid cell, which
is used by DBuilder to partition the grid. We also compute the values for
the abovecon, leftcon, rightcon, belowcon, maskrow, and maskcol arrays
using this 2D mask and add them to a user information array. The
DBuilder partition routine then passes the data for the user information
array to the processor that locally owns the data after the partition.

DBuilder returns a data structure containing the partitioned domain,
including a list of all grid cells owned by each processor. We also store a
layer of ghost cells bordering the 2D grid on each processor. This allows us
to store a copy of data stored on other processors that is needed to
complete computations for data stored on the current processor. We can
complete computations that require data from neighboring grid cells while
minimizing the time spent passing data between processors.

Once the domain has been partitioned, we delete the 2D mask array in
order to greatly reduce the amount of memory used by GSSHA in compari-
son to storing the full 2D mask array on each processor. The mask array is
replaced with partioned maskrow and maskcol arrays that contain the
global row and column for each grid cell.

With the addition of the partitioned domain, we create the two new
variables ONUM and LNUM in addition to GNUM to provide information
about the number of grid cells used during the simulation. ONUM stores
the number of owned grid cells and LNUM the sum of the owned grid cells
and the ghost grid cells. ONUM replaces GNUM throughout GSSHA for
loops over the entire 2D domain and for allocating arrays in some cases
where the array is not involved with computations involving neighboring
grid cells. LNUM replaces GNUM throughout GSSHA for allocating arrays

ERDC TR-13-8 7

that are involved with computations involving neighboring grid cells and
for some loops where each processor has the necessary information to
modify the ghost cells without transferring data between each processor.

Basic Examples

Once we have created the partitioned domain, we can modify the GSSHA
code to properly interact with the partitioned grid. There are a number of
common communication patterns that are used throughout GSSHA that
we will discuss below.

We modify partitioned arrays by looping over the locally owned grid cells.
If the array we are modifying is involved in computations using the current
grid cell and a neighboring grid cell, then we must call a global update to
make sure that the ghost values are accurate.

1 for(i=1; i_ONUM; i++)
2 array1[i] = coef*data[i];
3 DBuild_Global_dupdate(array1,mpi_data);
4

5 for(i=1; i_ONUM; i++)
6 array2[i]=coef*(array1[i+1]-array1[i]);
7 DBuild Global dupdate(array2,mpi data);

Throughout GSSHA there are some values that are computed across the
entire domain. Some of these values are running sums, while others are
computed each time-step. Additionally maximum or minimum values are
computed across the entire domain in some cases. Each of these situations
requires some changes to the code.

1 double sum_value=0.0;
2 for(i=1; i_ONUM; i++) {
3 sum_value += array[i];
4 }
5 DBuild_Sum_Double(sum_value,mpi_data);
6 main value += sum value;

Error checking code must be changed to properly respond to errors when
using multiple processors, especially when error checking inside loops over
the 2D domain. The error message must be broadcast to all processors after
the loop is completed so that all processors are aware that an error has
occurred and can all have the same response. In some cases, instead of
computing an error that causes the code to exit, an error tolerance will be
computed that causes the time-step to be reduced or another action to take
place to improve the accuracy of the code, requiring similar changes.

ERDC TR-13-8 8

1 for(i=1; i_ONUM; i++) {
2 if(isnan(array[i])!=0) {
3 printf("Error message");
4 errptr.flag=4000;
5 break;
6 }
7 }
8 DBuild_Max_Int(errptr.flag);
9 if(errptr.flag==4000) {
10 main_err(&errptr);
11 return;
12 }

Domain Coupling

We create a coupler between the 2D domain and the streamcells for the 1D
domain. The streamcells are 2D grid cells that contain 1D grid cells. The
coupler creates a map from the 2D domain that is partitioned across all
processors to a streamcell array that is stored on each processor. This array
contains nstreamcells gridcells in indices 1 to nstreamcells; therefore, we do
not need to use gst_gnum to determine the grid number and can instead set
the grid number using the current loop iteration for the streamcells. For any
routine with computations that use both the 1D and 2D domains, we create
a streamcell array for any 2D array using the coupler at the beginning of the
routine. These streamcell arrays interact with the 1D domain, which is
stored on each processor. Once the 1D computations are complete, we then
copy any modified streamcell arrays back to the 2D grid.

1 // Get array of streamcells
2 stream=(double*)malloc(nstreamcells+*sizeof(double));
3 DBuild_Coupler_dupdate_to_stream(stream,global,
4 DB_D2TOD1,mpi_data);
5

6 // Modify array of streamcells
7 for(sc=1; sc_nstreamcells; sc++) {
8 for(frag=1; frag_ncellsingrid[sc]; frag++) {
9 #ifdef GMPI
10 grid=sc;
11 #else
12 grid=gst_gnum[sc][frag];
13 #endif
14 stream[grid]+=gst_val*1d_val;
15 array1d[node][link]=gst_val*val;
16 }
17 }
18

19 // Update original 2-D array using streamcells
20 DBuilder_Coupler_dupdate_to_global(global,
21 stream,mpi_data);
22

23 // Free streamcell array
24 free(stream);

ERDC TR-13-8 9

MPI Macros

A number of macros have been added to simplify the interaction between
GSSHA and DBuilder. This includes macros for updating ghost cells,
converting between local and global indices, coupling the 1D and 2D
domains, and computing a reduction on a variable stored on all processors.
These arrays take into account that the GSSHA arrays are stored using 1-
based indexing and the DBuilder arrays are stored using 0-based indexing.

Updating ghost cells

DBuild_ Global dupdate/iupdate(array,mpi_data)
Given an array partitioned across all processors, updates the ghost gridcells with
values stored on other processors.

DBuild_ Global dupdate 3d(array,type,mpi_data)
Given a partitioned 3d array and DBuilder type, updates the ghost gridcells with
values stored on other processors.

Converting between local and global indices

DBuild_Get_local_fnumber(global,local,mpi_data)
Given the global gridcell index, returns the local gridcell index using 1-based
indexing, returning -1 if the global index is not stored locally.

DBuild_Get_global_fnumber(local,global,mpi_data)
Given the local gridcell index, returns the global gridcell index using 1-based
indexing.

Coupling 1D and 2D domains

DBuild_Coupler_dupdate/iupdate_to_stream(array1d,
array2d, mpi_data)
Updates the 1D stream array with values from the 2D global array.

DBuild_Coupler_dupdate/iupdate_to_global(array2d, array1d,
mpi_data)
Updates the 2D global array with the values from the 1D stream array.

DBuild_Coupler_dupdate_3d_to_stream(array1d, array2d,
mpi_data)

ERDC TR-13-8 10

Updates the three dimensional 1D stream array with values from the three-
dimensional 2D global array.

DBuild_Coupler_dupdate_3d_to_global(array2d, array1d,
mpi_data)
Updates the three- dimensional 2D global array with the values from the three-
dimensional 1D stream array.

MPI Allreduce across all processors

DBuild_Sum_Double/Int(value,mpi_data)
Computes the sum of the value across all processors.

DBuild_Max_Double/Int(value,mpi_data)
Computes the maximum value of a variable across all processors.

3D Arrays

In order to work with parallelized 3d arrays, we developed the DARRAY
3D struct found in array 3d.h and array 3d.cpp. This struct allows us to
more easily create and manipulate 3D arrays using MPI. The DARRAY 3D
struct stores data in a 1D array, and contains variables to keep track of the
size of the array (number of locally owned grid cells), the number of rows
per grid cell, and the number of columns per grid cell. Accessor methods
are provided to allow users to modify the values of 3D arrays. This routine
was developed for the soil erosion routine. Below is the struct definition.
There are examples of code using the 3D arrays in the soil erosion routine
discussion below.

1 typedef struct DARRAY_3D {
2 DARRAY_3D();
3 DARRAY_3D(int size, int rows, int cols);
4 ¬DARRAY_3D();
5 double& operator()(int i, int j, int k);
6 double& index(int i, int j, int k);
7

8 // Local array information
9 int size;
10 int rows, cols;
11 double *data;
12
13 } DARRAY 3D;

ERDC TR-13-8 11

3 GSSHA Routine Parallelization

Next we discuss some of the key routines that have been parallelized. In
addition to these key routines, a large number of smaller routines have
been parallelized throughout the GSSHA code. Most of these routines use
parallelization techniques similar to the ones discussed throughout this
report.

Overland Flow Routing

The overland flow routing ADE and ADE-PC route overland ADEPC
routines and explicit method route_overland_adtv_wetlands routine are
all parallelized. The ADE and ADE-PC methods required some minor
modifications to be parallelized, while the explicit method required some
more significant modifications.

The ADE and ADE-PC methods modified the FLOWX, FLOWY, and
update_h routines to compute only the locally owned grid cells and then
update the ghost nodes after each loop. The code to compute the
outcoordinate grid cell was modified to verify that the grid cell is on the
current processor. MPI Allreduce routines are called to compute the sum
or maximum value of certain variables across all processors. Below is an
example of changes that were made.

1 double route_overland_ADEPC(...) {
2 while(time>1e-16) {
3 FLOWY(h,qy,...);
4 update_h(h,qy,...);
5 ...
6 }
7 }
8

9 void FLOWY(h,qy,...) {
10 for(i=1; i_ONUM; i++)
11 qy[i]=qy[i]+val*(h[i+1]-h[i]);
12 DBuild_Global_dupdate(qy,mpi_data);
13 }
14

15 void update_h(h,qy,...) {
16 for(i=1; i_ONUM; i++) {
17 h[i]=h[i]+val(qy[i+1]-qy[i]);
18 if(h[i]<val2)
19 loopbreak=2;
20 }

ERDC TR-13-8 12

21 DBuild_Max_Int(loopbreak);
22 DBuild_Global_dupdate(h,mpi_data);
23 }

The explicit method originally computes the dh values for the current
gridcell and neighboring grid cell in the loops computing qx and qy. There
is then a loop to use dh to update h. This is modified to compute only qx
and qy in separate loops, and then to compute the new h values based on
qx and qy, similar to the ADE and ADE-PC methods. Below is an example
of the changes.

1 // Compute qx
2 for(j=1; j_ONUM; j++)
3 qx[j]=qx[j]+newvalue;
4 DBuild_Global_dupdate(qx,mpi_data);
5

6 // Compute qy
7 ...
8

9 // Compute h
10 for(j=1; j_ONUM; j++) {
11 if(leftcon[j]!=0)
12 qx2l = qx[leftcon[j]];
13 else
14 qx2l = 0.0;
15 if(abovecon[j]!=0)
16 qy2a = qy[abovecon[j]];
17 else
18 qy2a = 0.0;
19 h[j] += (qx2l-qx[j]) + (qy2a-qy[j]);
20 }
21 DBuild Global dupdate(h,mpi data);

Infiltration

The Green and Ampt inf gna routine, Green and Ampt with Redistribution
inf_redist routine, Multi-layer Green and Ampt inf_gna_multi routine,
and Richards equation richards_solver routine are parallelized. Each
routine required modifications to only compute the locally owned grid
cells and then update the h array at the end of the methods, similar to the
modifications for the overland flow routing routines.

Groundwater

The groundwater routine is modified to use a PETSc linear solver instead
of the original LSOR linear solver for parallel GSSHA runs. The original
LSOR solver is still used for serial runs. We also allow users to call the
original LSOR solver while using MPI. However, using this routine with

ERDC TR-13-8 13

MPI requires passing all data to processor 0, which solves the linear
system and passes the results to the other processors. This results in much
slower running times, so we only recommend using this for purposes such
as testing the accuracy of the code in comparison to the serial version.

The groundwater routine is primarily modified to compute the locally
owned grid cells for a number of arrays and then update the ghost cells.
Many sections of code are modified to compute the sum or maximum value
of an array using MPI_Allreduce routines. The major changes are related to
the introduction of the PETSc linear solver in the mpi_init_petsc_solver
(called by the initialization section of the main_gssha_function) and
mpi_petsc_solver (called by the groundwater function) routines.

PETSc Linear Solver

The LSOR linear solver computes the new values for each row or column
of the 2D grid by generating and solving a tridiagonal matrix for each row
or column, using the newly computed values from the previous row or
column. This greatly limits parallelization due to only solving a single row
or column at a time and containing a significant amount of code that is
serial in nature.

Instead, we can generate a linear system using any 2D partition and use
PETSc to solve this linear system. We create a PETSc CSR matrix with split
arrays, allowing us to create a matrix structure once during the initialization
phase, and then to set the values of the matrix each time we solve the linear
system. Each processor generates ONUM rows of the matrix. The split array
structure requires that we create a CSR diagonal block array and a CSR off-
diagonal block array. The diagonal block array holds the data for the grid
cells stored on the current processor, while the off-diagonal block holds the
data for the grid cells stored on other processors. Once we have created a
matrix and set the values of the matrix, we simply call the PETSc solver,
which returns a solution vector.

Adding PETSc functionality allows us to use any linear solvers and
preconditioners provided by PETSc that are compatible with the split
array matrix format, as well as any new linear solvers that are created in
the future.

ERDC TR-13-8 14

Soil Erosion

The soil erode routine required many minor changes related to modifying
loops to only compute the values for grid cells stored on the locally owned
grid cells and MPI Allreduce calls to sum or find the maximum value of a
variable. However some major changes were needed to correctly parallelize
the section of code for computing the sediment mass balance. The original
routine was a single large loop computing the values for grid cells in the x-
direction and then the y-direction. Each iteration would modify values of
the current grid cell and two neighboring grid cells. This results in problems
when dividing the domain among many processors, as some computations
modify values stored on other processors.

To correctly parallelize this, we needed to divide the single loop into four
separate loops, allowing us to modify only the values stored on the current
processor, and to update the ghost nodes after computing values in the x-
and y-directions. We first compute temporary values in order to ensure
that all computations are not affected by previous iterations of the loop.
We then update the values of the main arrays using these temporary
arrays. We then call a global update to update the ghost nodes of the main
3D arrays. Since each iteration of each loop modifies both the current grid
cell and a neighboring grid cell, we loop over both the locally owned grid
cells and the ghost grid cells. This ensures that all necessary computations
are completed, although there are extra computations since we modify
values in the grid cells which are overwritten when performing a global
update.

1 // Outline for sediment mass balance computations:
2 Compute temp values for each grid cell in x-direction
3 Compute locally owned grid cells
4 Global update for vol_sed
5 Compute temp values for each grid cell in y-direction
6 Compute locally owned grid cells
7 Global update for vol sed

In order to more clearly see how the code is modified and how the
DARRAY 3D class is used, below is a simplified code snippet from this
routine. The xysedfract and xysed arrays are computed in the previous
loop using sed fract and vol sed. This setup prevents the previously
computed values in a loop from affecting the values computed later in the
loop, ensuring that we obtain the same solution on any number of
processors.

ERDC TR-13-8 15

1 for(j=1; j_LNUM; j++) {
2 for(k=1; k_NUMS; k++) {
3 // Determine outgoing and receiving cells
4 if(qxx[j]<0.0) {
5 outgo=rightcon[j];
6 recvg=j;
7 } else {
8 outgo=j;
9 recvg=rightcon[j];
10 }
11

12 // Update gridcells with previously computed values
13 (*sed_fract)(outgo,k,2) = xysedfract[j][k];
14 (*vol_sed)(outgo,k,2) -= xysed[j][k];
15 (*vol_sed)(recvg,k,2) += xysed[j][k];
16

17 // Zero out arrays index for next direction
18 xysed[j][k]=0.0;
19 xysedfract[j][k]=0.0;
20 }
21 }

Channel Routing

Parallelizing the channel routing process required modifying a number of
routines including ex flow route, lateral inflow, and gw chan exchange. The
1D channel routing domain is also generally fairly small in comparison to
the 2D domain, so there are limited opportunities for speedups. Therefore
we set up the 1D domain to be computed on each processor. This requires
us to copy data from the partitioned 2D domain to every processor at the
beginning and end of many of the 1D channel routing routines.

Each of these routines use a similar pattern as shown in the earlier section
on coupling the 1D and 2D domains. The 2D array is copied to a streamcell
array stored on each processor, which is then used for the 1D computations.
If this array is modified during the course of the routine, these streamcell
arrays are copied back to the 2D array. This process allows us to limit the
amount of the 1D code we must modify, allowing us to more quickly
parallelize the code and limit the number of changes we must make.

Lakes

The 1D lake calcs routine is parallelized similar to the 1D channel routing
routine by keeping a full copy of the lake data on each processor. This
routine loops over all of the lake cells on every processor and modifies the
2D array grid cells stored on the local processor. Some values computed on
each grid cell are broadcast to all processors to ensure that every processor
ends up with the same lake values.

ERDC TR-13-8 16

SLM Alternate Run Mode

The secant Levenberg-Marquardt local search method is modified to run
parallel GSSHA simulations, as well as to run multiple parallel GSSHA
simulations at the same time.

The GSSHA code must first be modified to work with linux. This requires
converting the postGSSHA.bat script to a postGSSHA.sh script, as well as
using slightly modified versions of otl2ssf.exe and tsproc compiled using
linux. These modifications allow these routines to work with multiple sets
of input and output files at once. When calling multiple instances of the
main gssha routine with different input values, only one processor per
instance will call postGSSHA.sh.

Next we modify GSSHA so that we can run multiple different GSSHA
simulations at once. The main GSSHA routine is modified to accept a MPI
Communicator and a group number as input. The GSSHA code is modified
to use this communicator when calling MPI functions, and appends the
group number to any output files. Therefore if eight GSSHA simulations
are run at once, then eight variations of each output file are produced.

The ModelSensitivityMatrix loop to compute the Jacobian is modified to
run multiple GSSHA simulations at once based on the number of Jacobian
updates needed and the number of available processors. The code
attempts to take advantage of all available processors for each iteration of
the loop. If there are more Jacobian updates than processors, then there
will be multiple sets of Jacobian updates using mostly one processor per
run. If there are many more processors than Jacobian updates, then each
run will use multiple processors. Each call to main gssha will result in a
different set of output files.

At the end of the ModelSensitivityMatrix loop, we update the solution
array on all processors. Each processor computes some new values for this
array, but at the end of this loop, we want every processor to have the
same values for each variable. We loop over the solution array and
determine which processor computed the new value for each array index
and then broadcast this value to all processors.

When other parts of the SLM code call main gssha to compute initial
values, run models for new lambda values, etc, one group and all available
processors are used.

ERDC TR-13-8 17

4 Parallel I/O

The original GSSHA code primarily read and wrote ascii files. In order to
speed up the I/O code and allow the I/O to work correctly for large grids,
we need to convert the input files to ascii, develop binary routines capable
of quickly reading and partitioning the data, and then convert the output
files from binary back to ascii. This requires the developing of pre- and
post-processing routines as well as the MPI GFILE class that handles the
parallel file I/O using MPI I/O. These I/O routines are added in addition
to the original serial ascii routines.

Pre- and Post-processing

A pre-processing program called pre gssha is developed that must be run
prior to the main GSSHA simulation. This routine reads the project file
and picks out the input files that must be converted from ascii to binary.
The GSSHA code to read the project file is adapted to a simpler version in
the file pre post readprj.cpp. This code reads in each line from the project
file, and extracts and saves the names of any input or output files. The pre-
gssha routine then calls a function to convert the file from ascii to binary.
This routine first writes any header data to the top of the file. The routine
then reads in each line of an input file and each line of the mask file, and
then writes the grid cell values from the input file for each non-zero entry
in the mask file to the binary file. This routine only needs to be run once
after the input files are created or modified.

A similar routine called post-gssha is used for post-processing. This
routine also uses the pre post readprj.cpp file to process the project file
and extract input and output file names. This routine then calls a function
to conver the binary files to ascii files. This routine first converts the
binary header information to ascii information, and then reads in each line
of the binary output file and each line of the mask file. The routine then
writes the zeros to the locations in the 2D grid for a zero entry in the mask
file, and writes values from the binary files for each non-zero entry in the
mask file. This routine must be run after every GSSHA simulation in order
to convert the new output files from binary to ascii.

ERDC TR-13-8 18

GSSHA MPI File Class

The MPI GFILE class is designed to handle opening, reading, writing, and
closing MPI files for GSSHA. New I/O routines have been written for the
parallel MPI files in addition to the original ascii files.

The MPI GFILE class contains the name of the original and binary files,
the MPI File object, an offset used to track the writing location in the file,
and a boolean value to determine if the file is open.

1 typedef class MPI_GFILE {
2

3 char *filename; // File name
4 char *binfilename; // Binary file name
5

6 MPI_File fptr; // MPI_File object
7

8 int offset; // Current read/write location
9 // in MPI_File
10 bool opened; // True if file has been opened,
11 // false if not
12 } MPI GFILE;

In the initialization code, the routine mpi init file types uses the 2D
partition to create an MPI type used to read and write data from files.
Separate routines are created for double and integer file types.

1 // Create double mpi file type
2 MPI_Type_create_indexed_block(mpi_data->ownedElements,1,
3 mpi_data->vtxDomain2d.globalNumber,
4 MPI_DOUBLE,&mpi_data->mpi_file_double);
5 MPI_Type_commit(&mpi_data->mpi_file_double);
6

7 // Create int mpi file type
8 MPI_Type_create_indexed_block(mpi_data->ownedElements,1,
9 mpi_data->vtxDomain2d.globalNumber,
10 MPI_INT,&mpi_data->mpi_file_int);
11 MPI Type commit(&mpi data->mpi file int);

Once these MPI types are created, we can read or write data from files by
setting a view using this MPI type, and then write the data to the file.
Below is an example based on the MPI GFILE code.

1 // Writing header data to a file
2 MPI_File_set_view(fptr,offset,MPI_DOUBLE,MPI_DOUBLE,
3 "native",MPI_INFO_NULL);
4 MPI_File_write_all(fptr,&val1,1,MPI_DOUBLE,&status);
5 MPI_File_write_all(fptr,&val2,1,MPI_DOUBLE,&status);
6 MPI_File_write_all(fptr,&val3,1,MPI_DOUBLE,&status);
7 MPI_File_write_all(fptr,&val4,1,MPI_DOUBLE,&status);

ERDC TR-13-8 19

8 offset+=sizeof(double)*4;
9

10 // Writing double array to a file
11 MPI_File_set_view(fptr,offset,MPI_DOUBLE,
12 mpi_data->mpi_file_double,"native",MPI_INFO_NULL);
13 MPI_File_write_all(fptr,data,mpi_data->ownedElements,
14 MPI_DOUBLE,&status);

This allows the GSSHA code to call a few fairly simple functions to read and
write data. Below is an example that opens a file, reads the header data to
many variables, reads the file data to an array, and then closes the file.

1 MPI_GFILE *mpi_fptr;
2 mpi_fptr.open_read_file(filename,mpi_data);
3 mpi_fptr.read_header(&val1,&val2,...,&valn,mpi_data);
4 mpi_fptr.read_map_double(data,mpi_data);
5 mpi fptr.close file();

Separate routines are written for each type of GSSHA file in order to make
sure that the MPI version produces the same output as the original
routines.

ERDC TR-13-8 20

5 Run Procedure

Once a GSSHA project has been developed, there are a number of steps
needed to run the MPI version. GSSHA users will first need to compile
GSSHA using the compile all.sh script. This will compile the code for
GSSHA, DBuilder, and ParMETIS and produce an executable called gssha.
This compile script will also compile a program for the secant Levenberg-
Marquardt alternate run mode, the pre gssha program, and the post-gssha
program.

Once GSSHA is compiled, the pre gssha routine must be run to convert the
input files into a binary format for MPI GSSHA. This command only needs
to be run once for a set of input files, although if the input files are changed,
you may need to rerun pre gssha. Next we run the GSSHA simulation using
mpirun (or a similar mpi command) on multiple processors. Finally we run
post gssha in order to convert the binary output files into ascii binary files.

1 // In GSSHA code directory /home/user/GSSHA
2 sh compile_all.sh
3

4 // In GSSHA project directory
5 // /work/user/GSSHA_Projects/BasicGSSHA
6 ./pre_gssha basic_ov.prj
7 mpirun -np 4 ./gssha basic_ov.prj
8 ./post gssha basic ov.prj

For small, quick simulations, GSSHA user may be able to use a desktop
system or an interactive session on a HPC (High Performance Computing)
system. However for large, time-consuming simulations, GSSHA users will
need to submit a job to a batch queue on a HPC system. This will allow
users to submit a job that will run when there is space available on the
HPC system. The queue system tends to start smaller, shorter runs more
quickly, so users should take this into account when selecting the number
of processors to use and the wall time for their run.

1 #!/bin/sh
2 #PBS -l ncpus=256
3 #PBS -l walltime=12:00:00
4 #PBS -q standard
5 #PBS -A ACCOUNT
6 #PBS -N gssha_256
7

8 cd /work/user/GSSHA_Projects/BasicGSSHA
9

10 mpirun -n 256 /home/user/GSSHA/gssha_mpi/gssha
11 basic ov.prj > gssha 256 output.txt

ERDC TR-13-8 21

6 Performance Results

In order to demonstrate the performance of GSSHA, we run tests using the
large New Orleans and Fort Stewart models. The New Orleans model
contains about 4.5 million grid cells. The simulation runs for 1 hour with a
0.01 second time-step size, simulating overland flow using the ADE
method. Tests are run on Garnet, a Cray XE6, using from 16 to 4096
processors. We show the computation time and total running time in
Table 1, where the computation time is the time spent in the main time-
stepping loop without I/O, and total running time includes initialization
time and I/O time. These results demonstrate that we can obtain
significant speedups using up to about two thousand processors.

Table 1. Run times for a 1 hour New Orleans
simulation

Processors Computation Time Total Time

16 64638.29 64675.77

512 2526.98 2566.40

1024 1868.22 1913.16

2048 1502.39 1555.89

3072 1818.73 1881.07

4096 2034.20 2108.93

The Fort Stewart model contains about 45 million grid cells. The
simulation runs for 48 hours with a 10 second time-step size, simulating
overland flow using the ADE method. Tests are run on Garnet, a Cray XE6,
using from 16 to 1024 processors. The results in Table 2 demonstrate that
we can obtain significant speedups on at least 1024.

Table 2. Run times for a 48 hour Fort Stewart
simulation

Processors Computation Time Total Time

16 17282.72 19519.51

256 1813.82 4026.44

1024 523.35 2763.07

ERDC TR-13-8 22

The exponential speedup plot in Figure 1 more clearly shows that we
obtain near linear speedups on up to 512 to 1024 processors for these two
models. However, the New Orleans model shows that as the overhead
increases and amount of work per processor decreases, the running times
start to increase on over 2048 processors. Larger datasets and more
optimization will be necessary to obtain better speedups.

ERDC TR-13-8 23

7 Conclusion

This report discusses the implementation of MPI within GSSHA, using
DBuilder to assist with the parallelization. The 2D domain is partitioned
across all processors, while the 1D domain is computed on each processor,
using a coupler to pass data between the 2D and 1D domains. The original
LSOR groundwater linear solver is replaced with the PETSc linear solvers,
providing access to a wide variety of state-of-the-art parallel linear solvers.
The overland routing, infiltration, ground-water, soil erosion, channel
routing, and lakes processes and the secant Levenberg-Marquardt
alternate run mode are parallelized. Results demonstrate that we are
capable of obtaining significant speedups on up to about two thousand
processors, with potential for speedups on larger numbers of processors
for larger problems.

Figure 1. Exponential speedup plot for New Orleans and
Fort Stewart Simulations.

A significant amount of future work still remains in order to finish
parallelizing GSSHA. A number of routines and input options still need to
be parallelized, such as routines related to wetlands, snow, and many of
the alternate run modes. More detailed testing will be needed to verify that

ERDC TR-13-8 24

all input options and original GSSHA functionality work correctly in the
parallel version. There are many opportunities to optimize the code for
better performance, especially with the 1D routines, which currently run a
copy of the 1D model on every processor. Many of the 2D routines also
have opportunities for improvement since the primary focus up to this
point has been to ensure that the code runs accurately in parallel. Further
maintenence will also be needed to ensure that MPI GSSHA continues to
produce accurate solutions as more new routines and code are introduced
to GSSHA.

ERDC TR-13-8 25

References

Message Passing Interface (MPI) Forum. 2012. forum home page, 2012.
http://www.mcs.anl.gov/research/projects/mpi/.

Hunter, R. M. and J-R. C. Cheng. 2005. Dbuilder: A parallel data management toolkit
for scientific applications. In Proceedings of the International Conference on
Parallel and Distributed Processing Techniques and Applications, volume 2.

Campbell, T., R. Allard, R. Preller, L. Smedstad, A. Wallcraft, Sue Chen, Hao Jin, S.
Gabersandek, R. Hodur, J. Reich, C.D. Fry, V. Eccles, Hwai-Ping Cheng, J.-R.C.
Cheng, R. Hunter, C. DeLuca, and G. Theurich. 2010. Integrated modeling of the
battlespace environment. Computing in Science Engineering, 12(5):36–45.

Balay, S., K. Buschelman, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, B. F.
Smith, and H. Zhang. 2012. PorTable, extensible toolkit for scientific
computation, 2012. http://www.mcs.anl.gov/petsc.

Balay, S., K. Buschelman, V. Eijkhout, William D. Gropp, Dinesh Kaushik, Matthew G.
Knepley, Lois Curfman McInnes, Barry F. Smith, and Hong Zhang. 2008. PETSc
users manual. Technical Report ANL-95/11 – Revision 3.0.0, Argonne National
Laboratory, 2008.

Balay, S., W. D. Gropp, L. C. McInnes, and B. F. Smith. 1997. Efficient management of
parallelism in object oriented numerical software li- braries. In E. Arge, A. M.
Bruaset, and H. P. Langtangen, editors, Modern Soft- ware Tools in Scientific
Computing, pages 163–202. Birkha¨user Press, 1997.

Karypis, G. 2012. Parmetis - parallel graph partitioning and fill-reducing matrix ordering,
2012. http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview.

Karypis, G. and K. Schloegel. 2011. Parmetis: Parallel graph partitioning and sparse
matrix ordering library. Technical Report Version 4.0, Department of Computer
Science, University of Minnesota, 2011.

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining
the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for
reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington,
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not
display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)
September 2013

2. REPORT TYPE
Final Report

3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE

Development of Parallel GSSHA

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Paul Eller, Ruth Cheng, Aaron Byrd, Chuck Downer, and Nawa Pradhan

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER
28FK8C

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
 NUMBER

Information Technology Laboratory
US Army Engineer Research and Development Center
3909 Halls Ferry Road, Vicksburg, MS 39180-6199

ERDC TR-13-8

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

Headquarters, US Army Corps of Engineers
Washington, DC 20314-1000

11. SPONSOR/MONITOR’S REPORT
 NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

GSSHA (Gridded Surface Subsurface Hydrologic Analysis) is a physics-based, distributed, hydrologic, sediment and constituent fate
and transport model. GSSHA can simulate 2D overland flow, 1D stream flow, 1D infiltration, 2D groundwater, and full coupling
between groundwater, shallow soils, streams, and overland flow. GSSHA simulations can be very large and time consuming, simulating
millions of grid cells over a period of years. In order to run these simulations in a reasonable amount of time, GSSHA must be
parallelized to allow many processor systems to effectively run a single GSSHA simulation. Parallelizing GSSHA will enable shorter
turnaround time, as well as the study of larger, more complex problems.

This work attempts to fully parallelize GSSHA using MPI, with the ultimate goal of being able to efficiently run GSSHA on thousands
of processor cores. We hope to maintain the previous GSSHA functionality by allowing users to run GSSHA without MPI and/or
without PETSc. At this point in time we have parallelized and tested the GSSHA code for the overland routing, infiltration,
groundwater, soil erosion, channel routing, and lakes processes as well as many other routines needed to run these simulations correctly.
We have also parallelized the secant Levenberg-Marquardt alternate run mode. For overland routing we have parallelized the ADE,
ADE-PC, and explicit methods. For infiltration we have parallelized the Green and Ampt, Green and Ampt with Redistribution, Multi-
layer Green and Ampt, and Richards methods.

15. SUBJECT TERMS

Distributed
Hydrologic

Sediment
Gridded surface
Transport model

Parallelization
GSSHA
Domain coupling

16. SECURITY CLASSIFICATION OF: 17. LIMITATION
OF ABSTRACT

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE
PERSON

a. REPORT

UNCLASSIFIED

b. ABSTRACT

UNCLASSIFIED

c. THIS PAGE

UNCLASSIFIED 31
19b. TELEPHONE NUMBER (include
area code)

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. 239.18

	Abstract
	Contents
	Figures and Tables
	Preface
	1 Introduction
	Background
	MPI
	DBuilder
	PETSc

	General Parallelization

	2 2D Domain Decomposition
	Basic Examples
	Domain Coupling
	MPI Macros
	Updating ghost cells
	Converting between local and global indices
	Coupling 1D and 2D domains
	MPI Allreduce across all processors
	3D Arrays

	3 GSSHA Routine Parallelization
	Overland Flow Routing
	Infiltration
	Groundwater
	PETSc Linear Solver
	Soil Erosion
	Channel Routing
	Lakes
	SLM Alternate Run Mode

	4 Parallel I/O
	Pre- and Post-processing
	GSSHA MPI File Class

	5 Run Procedure
	6 Performance Results
	7 Conclusion
	References
	REPORT DOCUMENTATION PAGE

